Magneto: A Foundation Transformer

Hongyu Wang^{*1}, Shuming Ma^{*2}, Shaohan Huang², Li Dong², Wenhui Wang², Zhiliang Peng¹, Yu Wu², Payal Bajaj², Saksham Singhal², Alon Benhaim², Barun Patra², Zhun Liu², Vishrav Chaudhary², Xia Song², Furu Wei²

¹ University of Chinese Academy of Sciences, ² Microsoft

https://github.com/microsoft/torchscale

Introduction

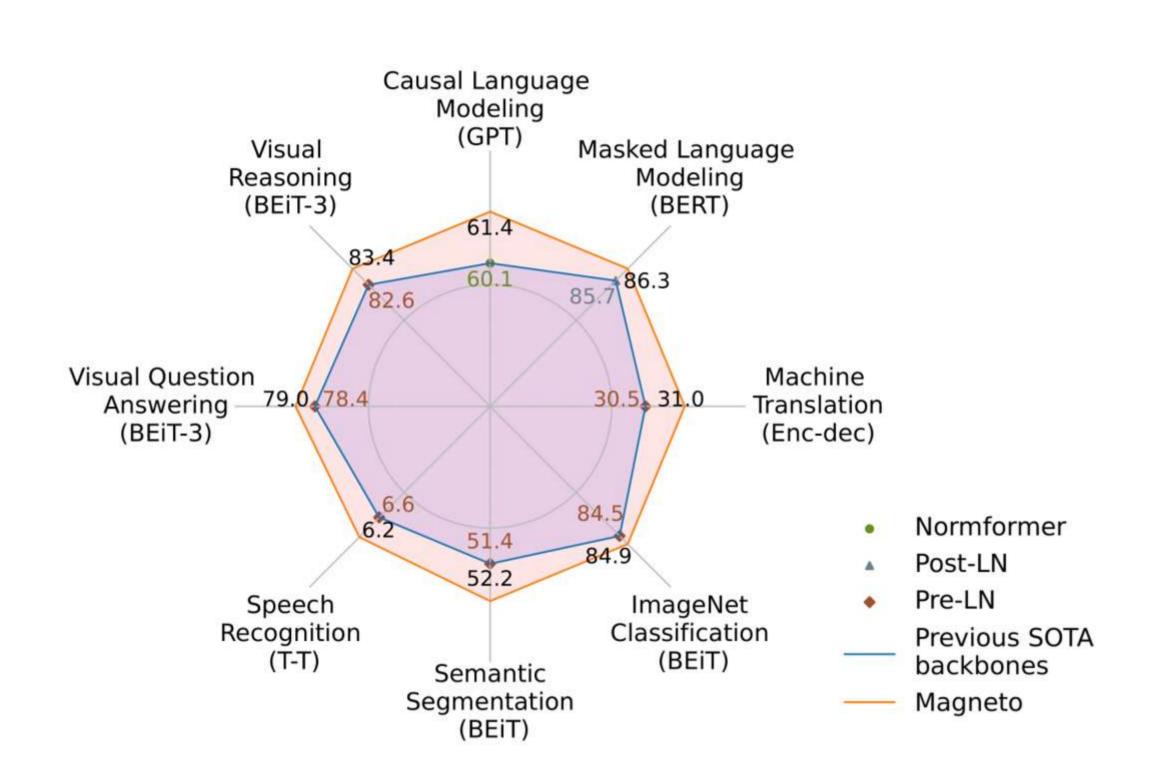


Figure 1: Magento performs better than the previous SOTA backbones across tasks and modalities with a unified architecture.

Problem: Under the same name "Transformers", different areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers.

Our approach: Magneto, A Foundation Transformer for true generalpurpose modeling

- Good expressivity: Sub-LayerNorm
- Stable scaling up: The initialization strategy theoretically derived from DeepNet

Magneto outperforms de facto Transformer variants designed for various applications, including

- language modeling (i.e., BERT, and GPT), machine translation
- vision pretraining (i.e., BEiT)
- speech recognition
- multimodal pretraining (i.e., BEiT-3)

Methods

def	<pre>subln(x): return x + fout(LN(fin(LN(x))))</pre>
def	<pre>subln_init(w): if w is ['ffn', 'v_proj', 'out_proj']: nn.init.xavier_normal_(w, gain=γ) elif w is ['q_proj', 'k_proj']: nn.init.xavier_normal_(w, gain=1)</pre>

Architectures	Encoder γ	Decoder
Encoder-only (e.g., BERT, ViT)	$\sqrt{\log 2N}$	-
Decoder-only (e.g., GPT)	_	$\sqrt{\log 2M}$
Encoder-decoder (e.g., NMT, BART)	$\sqrt{\frac{1}{3}\log 3M\log 2N}$	$\sqrt{\log 3M}$

Figure 2: **Left:** pseudocode of Sub-LN. We take Xavier initialization as an example, and it can be replaced with other standard initialization. Notice that γ is a constant. **Right:** parameters of Sub-LN for different architectures (N-layer encoder, M-layer decoder).

Architecture: Sub-LayerNorm

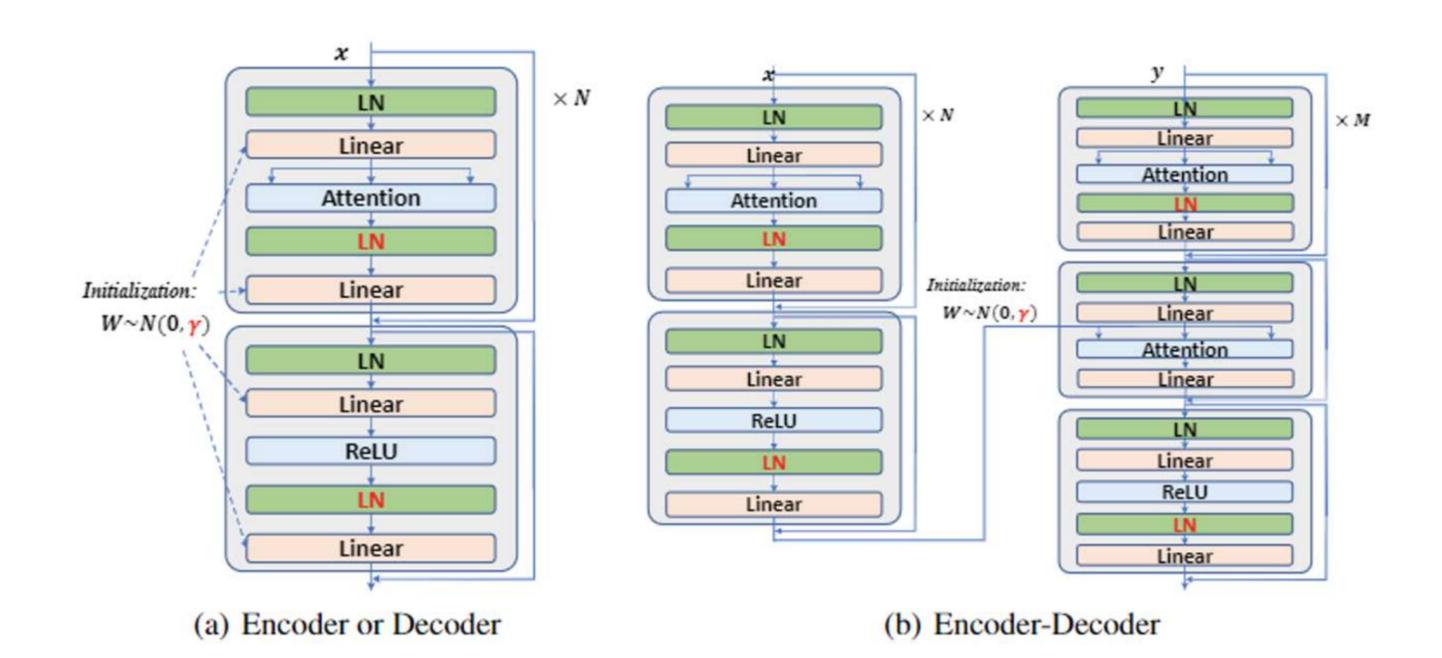


Figure 3: The layout of Sub-LN for (a) encoder-decoder, (b) encoder or decoder architectures.

Initialization: Theoretical Derivation from DeepNet

Model Update: $\Delta F = \| \gamma^T (F(x, \theta^*) - F(x, \theta)) \|$

where (x, γ) , $F(x, \theta)$ denotes the training data and the model, respectively.

Theorem 1: Given an *N*-layer Magneto $F(x,\theta)$, the *l*-th sublayer is formulated as $x^l = x^{l-1} + W^{l,2}LN(W^{l,1}LN(x^{l-1}))$. Under SGD update, ΔF^{sub} satisfies that:

$$\Delta F^{sub} \leq \eta d(\frac{\sum_{l=1}^{L} (1 + \frac{v_l^2}{w_l^2})}{\sum_{n=1}^{L} v_n^2} + \sum_{l=1}^{L} \sum_{k=2}^{L} \frac{1 + \frac{v_l^2}{w_l^2}}{\sum_{n=1}^{L} v_n^2} \frac{v_k^2}{\sum_{n=1}^{L-1} v_n^2})$$

GOAL: $F(x,\theta)$ is updated by $\Theta(\eta)$ per SGD step after initialization as $\eta \to 0$. That is $\Delta F^{sub} = \Theta(\eta d)$ where $\Delta F^{sub} \triangleq F\left(x,\theta - \eta \frac{\delta L}{\delta \theta}\right) - F(x,\theta)$.

Derivation: The term related to the model depth can be bounded as:

$$\frac{\sum_{l=1}^{L} (1 + \frac{v_l^2}{w_l^2})}{\sum_{n=1}^{L} v_n^2} + \frac{1}{\sum_{n=1}^{L} v_n^2} \sum_{l=1}^{L} \sum_{k=2}^{L} (1 + \frac{v_l^2}{w_l^2}) \frac{v_k^2}{\sum_{n=1}^{k-1} v_n^2} = \mathcal{O}(\frac{\log L}{\gamma^2})$$

We use $v = w = \gamma = \sqrt{\log L}$ to bound the model update independent of depth.

Experiments

Language Tasks:

Magneto is more stable and has better performance for language modeling (i.e., BERT, and GPT) and machine translation.

Models	$\mathbf{En} o \mathbf{X}$	$\boldsymbol{X} \to \boldsymbol{En}$	Avg.
Post-LN		diverged	
Pre-LN	28.3	32.7	30.5
NormFormer	28.5	32.3	30.4
MAGNETO	28.7	33.2	31.0

Table 1: BLEU scores for Magneto and the baselines on the OPUS-100 dataset.

Models	# Layers	LR	WGe	WG	SC	HS	Avg.
Pre-LN		5e-4	55.2	65.3	70.8	44.8	59.0
Pre-LN		1e-3			diverged		
Normformer	24L	5e-4	54.3	68.1	72.0	45.9	60.1
Normformer		1e-3			diverged		L.
MAGNETO		1e-3	54.3	71.9	72.4	46.9	61.4
Pre-LN		5e-4	57.3	67.0	74.0	48.0	61.6
Normformer	48L	5e-4	56.5	70.5	74.0	49.8	62.7
MAGNETO		1.2e-3	57.0	73.3	74.7	51.2	64.1
Pre-LN		5e-4	58.0	70.9	75.7	51.7	64.1
Normformer	72L	5e-4	57.4	75.4	75.2	53.6	65.4
MAGNETO		1.2e-3	57.9	73.7	76.6	55.1	65.8

Table 2: Zero-shot results for Magneto and the baselines (WGe: Winogrande, WG: Winograd, SC: Storycloze, and HS: Hellaswag dataset).

Models	LR	MNLI	QNLI	QQP	SST	CoLA	MRPC	STS Avg.
Post-LN	5e-4	86.7/86.7	92.2	91.0	93.4	59.8	86.4	89.4 85.7
Post-LN	1e-3				diverg	ged		
Pre-LN	1e-3	85.6/85.4	92.2	91.1	93.4	55.6	85.1	88.4 84.6
Pre-LN	2e-3				diverg	ged		'
MAGNETO	3e-3	86.7/86.7	92.4	91.2	93.9	62.9	87.2	89.2 86.3

Table 3: Results for Magneto and the baselines on the GLUE benchmark.

Vision Tasks:

Magneto outperforms vanilla ViT on vision pre-training.

Models	# Layers	ImageNet	ImageNet Adversarial	ImageNet Rendition	ImageNet Sketch	ADE20k
Pre-LN	12L	84.5	45.9	55.6	42.2	51.4
MAGNETO		84.9	48.9	57.7	43.9	52.2
Pre-LN	24L	86.2	60.1	63.2	48.5	54.2
MAGNETO		86.8	65.4	67.5	52.0	54.6

Table 4: Results for Magneto and the baselines on the vision tasks.

Speech Tasks:

Magneto outperforms Pre-LN on speech recognition.

Models	# Layers	Dev-Clean	Dev-Other	Test-Clean	Test-Other
Pre-LN	18L	2.97	6.52	3.19	6.62
MAGNETO		2.68	6.04	2.99	6.16
Pre-LN	36L	2.59	6.10	2.89	6.04
MAGNETO		2.43	5.34	2.72	5.56

Table 5: Results for Magneto and the baselines on speech recognition.

Vision-Language Tasks:

Magneto has better performance than Pre-LN on multi-modal pre-training.

Models	# L overs	VC		NLVR2	
Models	# Layers	test-dev test-std		dev	test-P
Pre-LN	24L	78.37	78.50	82.57	83.69
MAGNETO	24L	79.00	79.01	83.35	84.23

Table 6: Results for Magneto and the baselines on vision-language tasks.

